Musterlösung: 12. Jgst. 2. Test Datum: 07.12.2004

Klasse: GY 03 c Fach: Mathematik (Leistungskurs)

Thema: Exponentialfunktionen mit Parameter; L'Hospital; Newton-Verfahren;

Ableitung von Exponentialfunktionen

• Differentiation von Exponential- & Ln-Funktionen

Bilden Sie die erste Ableitung folgender Funktionen:

a)
$$f(x) = x - e^{2x-3}$$
 $f'(x) = 1 - 2e^{2x-3}$

b)
$$f(x) = x^2 e^{-3x}$$
 \Rightarrow $f'(x) = 2xe^{-3x} - 3x^2 e^{-3x}$

$$f'(x) = xe^{-3x}(2-3x)$$

$$f_t(x) = x^{2x-3}$$

$$f_{t}'(x) = x^{2x-3} \cdot \left[2\ln(x) + \frac{2x-3}{x} \right]$$

$$d) f_t(x) = \ln(\sqrt{2x+t})$$

$$f_{t}'(x) = \frac{1}{\sqrt{2x+t}} \cdot \frac{2}{2\sqrt{2x+t}}$$

$$f_{t}'(x) = \frac{1}{2x+t}$$

2 Exponentialgleichungen: Lösen Sie folgende Exponentialgleichung

$$e^{2x} - 2e^{x} - 3 = 2,25$$

$$u^{2} - 2u - 5,25 = 0 \Rightarrow u_{\frac{1}{2}} = \frac{2 \pm \sqrt{4 + 21}}{2}$$

$$\Rightarrow u_{\frac{1}{2}} = \frac{2 \pm 5}{2} \Rightarrow u_{1} = 3,5 \land u_{2} = -1,5$$

$$\Rightarrow e^{x} = 3,5 \Rightarrow x = \ln(3,5)$$

$$\Rightarrow e^{x} = -1,5 \Rightarrow x = \ln(-1,5) \text{ n.d.}$$

• L'Hospital - oder nicht L'Hospital???

Ermitteln Sie die Grenzwerte:

a)
$$\lim_{x \to \infty} \left(\frac{x-1}{x^2} \right) \xrightarrow{L'Hospital} \lim_{x \to \infty} \left(\frac{1}{2x} \right) = 0$$

b)
$$\lim_{x\to 0} \left(\frac{x-1}{x^2}\right) \xrightarrow{Grenzwert \"{u}bergang} -\infty$$

c)
$$\lim_{x \to -\infty} \left(\frac{e^x}{x^2} + 3 \right) \xrightarrow{Grenzwert \text{iibergang}} 3$$

d)
$$\lim_{x \to \infty} \left(\frac{e^x}{x^2} \right) \xrightarrow{L'Hospital} \lim_{x \to \infty} \left(\frac{e^x}{2x} \right) \xrightarrow{L'Hospital} \lim_{x \to \infty} \left(\frac{e^x}{2} \right) = \infty$$

4 Kurvenuntersuchung

a) Untersuchen die Funktion $f_t(x) = (t - e^x)^2$ mit t > 0 auf Definitionsmenge, Symmetrie und Nullstellen.

Lösung: Defintionsmenge: $D = \Re$

Symmetrie: keine

$$f_t(-x) = (t - e^{-x})^2 \neq f_t(-x) \text{ und } \neq -f_t(x)$$

Nullstellen:
$$(t - e^x)^2 = 0 \implies x = \ln(t)$$

b) Zeigen Sie, dass die Ableitungen der Funktion

$$f_t(x) = e^{tx - \frac{1}{2}x^2}$$
 mit $t > 0$ folgende Formen annehmen:

Lösung:

$$f_t'(x) = \frac{(t-x)e^{tx}}{e^{\frac{1}{2}x^2}}$$
 und $f_t''(x) = e^{tx-\frac{1}{2}x^2} \left[(t-x)^2 - 1 \right]$

c) Bestimmen Sie die Extrema und die Ortskurve der Extremwerte der Funktion in b).

Lösung: Extrema

$$\frac{(t-x)e^{tx}}{e^{\frac{1}{2}x^2}} = 0 \implies x = t$$

$$f_t"(t) = -e^{\frac{1}{2}t^2} < 0 \qquad \Rightarrow \quad Max\left(t \mid e^{\frac{1}{2}t^2}\right)$$

Lösung: Ortskurve

$$x = t \implies y = e^{\frac{1}{2}t^2} \implies y = e^{\frac{1}{2}x^2}$$

• Newton-Verfahren

Berechnen Sie die $\sqrt{2}$ mittels Iteration mit Newton auf 4 Stellen genau. Wählen Sie bitte einen geschickten Startwert.

Lösung:
$$f(x) = x^2 - 2$$
; $f'(x) = 2x$

	A	В	С	D	E	F
1	Das Newton-Iterationsverfahren					
2						
3	Startwert x ₁ : 1			Anzahl der Iterationen:		3
4	Funktion f(x):					
5	Ableitung f'(x):					
6						
7	Berechnung der Nullstelle					
8						
9	n	Χn	f(x _n)	f'(x _n)	$f(x_n)/f'(x_n)$	X _{n+1}
10	1	1,000000	-1,000000	2,000000	-0,500000	1,500000
11	2	1,500000	0,250000	3,000000	0,083333	1,416667
12	3	1,416667	0,006944	2,833333	0,002451	1,414216