Musterlösung

11. Jgst.

4. Test

Datum: 14.03.2006

Klasse: GY 05 c

Fach: Mathematik (Kernfach)

Thema: Differentialquotient; Ableitungen; Tangenten und Normalen

• Differential quotient

Bilden Sie mit Hilfe des Differentialquotienten die Ableitung folgender Funktionen:

a)
$$f(x) = 4x$$

$$f(x) = x^2 - x$$

Lösung:

$$f(x) = 4x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{4(x_0 + h) - 4x_0}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4x_0 + 4h - 4x_0}{h} = \lim_{h \to 0} \frac{4h}{h} = 4$$

$$f(x) = x^2 - x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\left[(x_0 + h)^2 - (x_0 + h) \right] - (x_0^2 - x_0)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{x_0^2 + 2x_0h + h^2 - x_0 - h - x_0^2 + x_0}{h} = \lim_{h \to 0} \frac{2x_0h + h^2 - h}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(2x_0 + h - 1)}{h} = 2x_0 - 1$$

2 Differential quotient

Erklären Sie kurz die mathematische Idee, die hinter dem

Differentialquotienten

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

steckt.

Lösung:

<u>Idee:</u> Aus der Sekantensteigung zweier verschiedener Punkte wird durch die Bewegung eines Punktes auf der Funktionskurve auf den zweiten Punkt hin eine Tangentensteigung erzeugt;

mathematisch wird dies als die Entwicklung vom Differenzenquotient zum Differentialquotient bezeichnet.

$$\frac{f(x_0 + h) - f(x_0)}{h} \xrightarrow{P_1 \text{ bewegt sich in Richtung } P_2} \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Ableitungen

Bilden Sie die erste Ableitung der folgenden Funktionen:

a)
$$f(x) = \frac{4x^5 - 2x^3 + x^2}{x^3}$$

b)
$$f(x) = \frac{2}{5}x^3 - \frac{1}{2}x + 4$$

$$f(x) = \frac{2}{x^2}$$

$$d) f(x) = 4\sqrt{x}$$

Lösung:

a)
$$f(x) = \frac{4x^5 - 2x^3 + x^2}{x^3} = 4x^2 - 2 + \frac{1}{x}$$
 Ableitung $f'(x) = 8x - \frac{1}{x^2}$

b)
$$f(x) = \frac{2}{5}x^3 - \frac{1}{2}x + 4 \xrightarrow{Ableitung} f'(x) = \frac{6}{5}x^2 - \frac{1}{2}$$

c)
$$f(x) = \frac{2}{x^2} = 2x^{-2} \xrightarrow{Ableitung} f'(x) = -4x^{-3} = -\frac{4}{x^3}$$

d)
$$f(x) = 4\sqrt{x} = 4x^{\frac{1}{2}} \xrightarrow{Ableitung} f'(x) = 2x^{-\frac{1}{2}} = \frac{2}{\sqrt{x}}$$

Tangenten ermitteln

Bestimmen Sie die Tangenten der Funktionen f(x) und g(x)

a)
$$f(x) = 4x^2 - x + 1$$
 in $x_1 = 2$.

b)
$$g(x) = \frac{1}{4}x^3 - x^2$$
 in $x_2 = -1$.

Lösung:

$$f(x) = 4x^{2} - x + 1 \xrightarrow{x=2} f(2) = 15$$

 $f'(x) = 8x - 1 \xrightarrow{x=2} f'(2) = 15$
 $t(x) = mx + b \xrightarrow{m=15; y=15; x=2} 15 = 15 \cdot 2 + b \implies b = -15$
 $\Rightarrow t(x) = 15x - 15$

$$g(x) = \frac{1}{4}x^{3} - x^{2} \xrightarrow{x=-1} g(-1) = -\frac{5}{4}$$

$$g'(x) = \frac{3}{4}x^{2} - 2x \xrightarrow{x=-1} g'(-1) = \frac{11}{4}$$

$$t(x) = mx + b \xrightarrow{m=\frac{11}{4}; y=-\frac{5}{4}; x=-1} -\frac{5}{4} = \frac{11}{4} \cdot (-1) + b \implies b = \frac{3}{2}$$

$$\Rightarrow t(x) = \frac{11}{4}x + \frac{3}{2}$$

9 Punkte zu den Steigungen finden

An welchen Stellen besitzen die Funktionen f(x) und g(x) die folgenden Steigungen?

a)
$$f(x) = 4x^2 - x + 1$$
 $m_1 = 1$

b)
$$g(x) = \frac{1}{4}x^3 - x^2$$
 $m_2 = 0$

Anmerkung: Gesucht sind nur die x-Werte.

Lösung:

$$f(x) = 4x^{2} - x + 1 \xrightarrow{Ableitung} f'(x) = 8x - 1 = 1$$

$$\Rightarrow x = \frac{1}{4}$$

$$g(x) = \frac{1}{4}x^3 - x^2 \xrightarrow{Ableitung} g'(x) = \frac{3}{4}x^2 - 2x = 0$$

$$\Rightarrow x\left(\frac{3}{4}x - 2\right) = 0 \Rightarrow x_1 = 0 \land x_2 = \frac{8}{3}$$

6 Beweis

Zeigen Sie, dass die Funktion $f(x) = \sqrt{x}$ keinen Tangentenpunkt mit der Steigung m = 0 besitzt.

Lösung:

Beh.:
$$\exists x_0 \text{ mit } f'(x_0) = 0$$

Bew.:

$$f(x) = \sqrt{x}$$
 $\xrightarrow{Ableitung}$ $f'(x) = \frac{1}{2\sqrt{x}} \stackrel{!}{=} 0$

nicht lösbar bzw. Widerspruch wegen 1 = 0

$$\Rightarrow$$
 es existiert kein x_0 mit $f'(x_0) = 0$